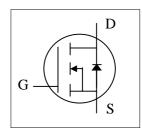


http://www.xpxbdt.com

XPX05N10AS

100V N-Channel Enhancement Mode Power MOSFET

- ▼ Simple Drive Requirement
- ▼ Fast Switching Characteristic
- ▼ Low Gate Charge
- **RoHS Compliant & Halogen-Free**



BV _{DSS}	100V
R _{DS(ON)}	135m Ω
I _D	5A

Description

05N10 series are from Advanced Power innovated design and silicon process technology to achieve the lowest possible onresistance and fast switching performance. It provides the

The special design SOT23-3Lpackage with good thermall performance is widely preferred for all commercial-industrial surface mount applications using infrared reflow technique and suited for voltage conversion or switch applications.

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
5N10	XPX05N10AS	SOT-23-3L	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings@Tj=25°C(unless otherwise specified)

Symbol	Parameter		Rating	Units
V _{DS}	Drain-Source Voltage		100	V
V _{GS}	Gate-Source Voltage		<u>+</u> 20	V
I _D @T _C =25℃	Drain Current, V _{GS} @ 10V		5	А
I _D @T _A =25℃	Drain Current, V _{GS} @ 10V ³		4.1	А
I _D @T _A =100℃	Drain Current, V _{GS} @ 10V ³		1.7	А
I _{DM}	Pulsed Drain Current ¹		10	А
P _D @T _A =25℃	Total Power Dissipation		1.38	W
T _{STG}	Storage Temperature Range -5		55 to 150	°C
TJ	Operating Junction Temperature Range -5		55 to 150	°C
Symbol	Parameter		Value	Unit
Rthj-c	Maximum Thermal Resistance, Junction-case		45	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	90	°C/W	

Electrical Characteristics@T_j=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	100	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =5A	-	112	135	$\mathbf{m}\Omega$
		V _{GS} =4.5V, I _D =4A	-	120	145	$\mathbf{m}\Omega$
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	1	1.7	3	V
9 _{fs}	Forward Transconductance	V _{DS} =5V, I _D =2A	-	8	-	S
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80V, V _{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = <u>+</u> 20V, V _{DS} =0V	-	-	<u>+</u> 100	nA
Q _g	Total Gate Charge	I _D =2A	-	12	20	nC
Q _{gs}	Gate-Source Charge	V _{DS} =80V	-	2.2	-	nC
Q _{gd}	Gate-Drain ("Miller") Charge	V _{GS} =10V	-	2.5	-	nC
t _{d(on)}	Turn-on Delay Time	V _{DS} =50V	-	7	-	ns
t _r	Rise Time	I _D =1A	-	5	-	ns
t _{d(off)}	Turn-off Delay Time	R _G =3.3Ω	-	16	-	ns
t _f	Fall Time	V _{GS} =10V	-	6	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	610	980	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	40	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	25	-	pF
R _g	Gate Resistance	f=1.0MHz	-	2.2	4.4	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{SD}	Forward On Voltage ²	I _S =1.2A, V _{GS} =0V	-	-	1.2	V
t _{rr}	Reverse Recovery Time	I _S =2A, V _{GS} =0V,	-	21	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	21	-	nC

Notes:

1.Pulse width limited by Max. junction temperature.

2.Pulse test

3.Surface mounted on 1 in² copper pad of FR4 board, t \leq 10sec ; 270 °C/W when mounted on Min. copper pad.

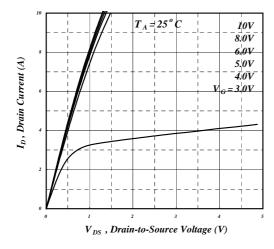


Fig 1. Typical Output Characteristics

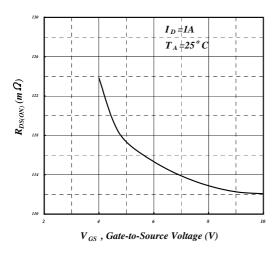


Fig 3. On-Resistance v.s. Gate Voltage

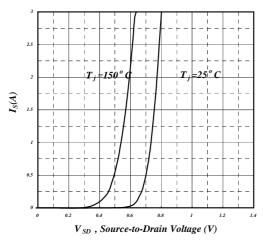


Fig 5. Forward Characteristic of Reverse Diode

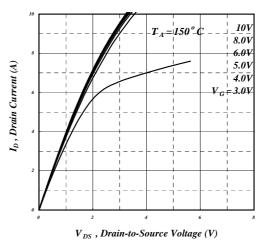


Fig 2. Typical Output Characteristics

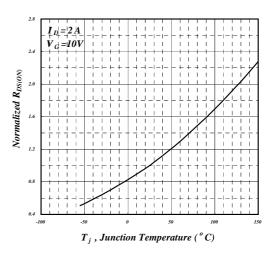
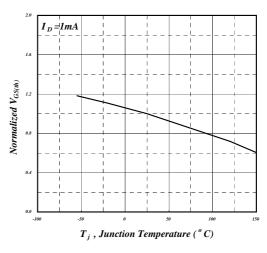
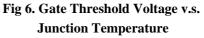




Fig 4. Normalized On-Resistance v.s. Junction Temperature

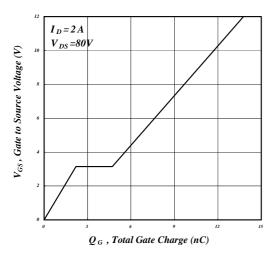


Fig 7. Gate Charge Characteristics

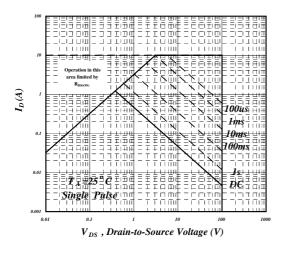
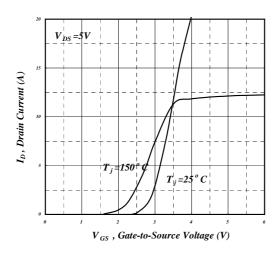



Fig 9. Maximum Safe Operating Area

Fig 11. Transfer Characteristics

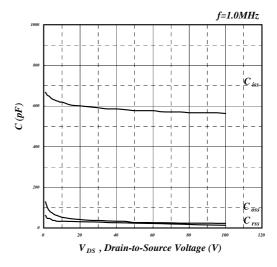


Fig 8. Typical Capacitance Characteristics

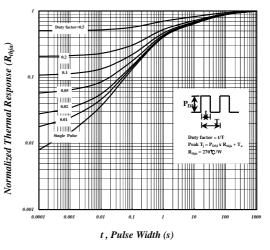


Fig 10. Effective Transient Thermal Impedance

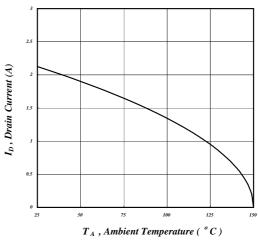


Fig 12. Drain Current v.s. Ambient Temperature

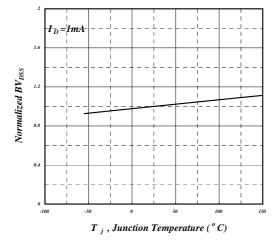


Fig 13. Normalized $BV_{\rm DSS}\,$ v.s. Junction Temperature

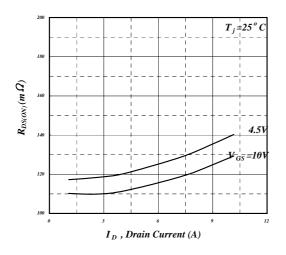


Fig 15. Typ. Drain-Source on State Resistance

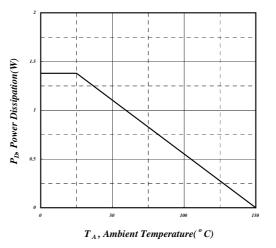
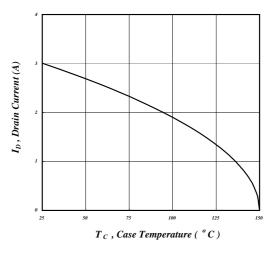
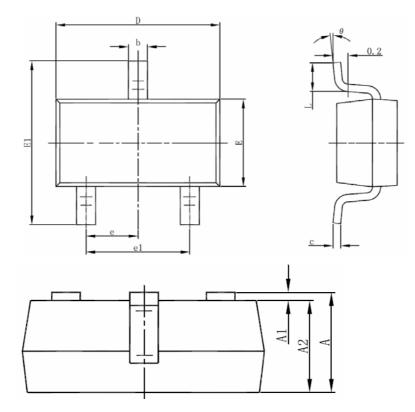


Fig 14. Total Power Dissipation




Fig 16. Drain Current v.s. Case Temperature

http://www.xpxbdt.com

100V N-Channel Enhancement Mode Power MOSFET

SOT-23-3L Package Information

Cumb a l	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	0.950(BSC)		BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Notes

1. All dimensions are in millimeters.

2. Tolerance ± 0.10 mm (4 mil) unless otherwise specified

3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils.

4. Dimension L is measured in gauge plane.

5. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

Flow (wave) soldering (solder dipping)

Product	Peak Temperature	Dipping Time
Pb device	245℃±5 ℃	5sec±1sec
Pb-Free device	260 °C +0/-5 °C	5sec±1sec

This integrated circuit can be damaged by ESD UniverChip Corporation recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedure can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Attention:

- Any and all XPX power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your XPX power representative nearest you before using any XPX power products described or contained herein in such applications.
- XPX power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all XPX power products described or contained herein.
- Specifications of any and all XPX power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- XPX power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all XPX power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of XPX power Semiconductor CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. XPX power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/ technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the XPX power product that you intend to use.
- This catalog provides information as of Sep.2019. Specifications and information herein are subject to change without notice.